40 research outputs found

    Use of High Resolution Satellite Images for the Calibration of Hydro-geological Models in Semi-Arid Regions: A Case Study

    Get PDF
    In this paper we present the preliminary results of a project devoted to use hydrologic and remote sensing models and data for water resource management in semi-arid regions. The project is developed in the Sahel region of Burkina Faso, where a set of high resolution synthetic aperture radar (SAR) images was acquired. The rationale of the project along with the preliminary results obtained by the processing of high resolution Cosmo- SkyMed data are presented and discussed

    Use of SAR data for hydro-morphological characterization in sub-Saharan Africa: a case study

    Get PDF
    In this paper we present the rationale and the preliminary results of a research project devoted to the appropriate and innovative use of remotely sensed data for water management in semi-arid regions. The study area is the district of Yatenga, northern Burkina Faso in the sub- Saharan belt of West Africa, where extreme climate conditions cause several problems: drought, floods, soil erosion. The data comes from the Italian Space Agency (ASI) Cosmo-Skymed program, which provides high resolution (1 meter) Synthetic Aperture Radar (SAR) images. Crucial peculiarity of the project is the use of open source software for data processing and hydrological modeling. Two different hydrological models have been selected. The Soil and Water Assessment Tool (SWAT) to be employed for the design of appropriate water management plans and soil erosion mitigation measures. The Width Function Instantaneous Unit Hydrograph (WFIUHD) model can to employed for the prevision of flood events and therefore for the planning of risk mitigation. The paper shows the preliminary results of the project obtained by the processing of the first available high resolution SAR data. In particular, the first step is the realization of a Digital Elevation Model (DEM). GIS tools have been set up for the DEMprocessing in order to derive the needed hydro-morphological basin attributes to support the geo-morphological rainfall- runoff (WFIUHD) modelin

    Automatic generation of co-seismic displacement maps by using Sentinel-1 interferometric SAR data

    Get PDF
    Abstract We present a tool for the automatic generation of co-seismic Differential Synthetic Aperture Radar Interferometry (DInSAR) products by using space-borne SAR data. In particular, the implemented tool relies on the large availability of Sentinel-1 SAR data and on-line earthquake catalogues (e.g. USGS, INGV) to generate co-seismic Line Of Sight (LOS) interferograms and displacement maps. The processing is triggered by the occurrence of a main seismic event, according to the accessible earthquake catalogues. The tool automatically retrieves all the needed SAR acquisitions that cover a defined area across the epicentre and generates the DInSAR products that will be then openly available through the European Plate Observing System (EPOS) portal. Moreover, the possibility to implement the presented tool into the upcoming Copernicus Data and Information Access Services (DIAS) will significantly reduce the product processing time, thus implying a faster product generation and delivery. Accordingly, such a tool not only will contribute to expand the use of DInSAR products in the geoscience field, but also will play a key role on the support of the Civil Protection authorities during the management of seismic crisis

    The Satellite Data Thematic Core Service within the EPOS Research Infrastructure

    Get PDF
    Trabajo presentado en la European Geosciences Union General Assembly, celebrada en Viena (Austria), del 23 al 28 de abril de 2017EPOS, the European Plate Observing System, is a long-term plan to facilitate the integrated use of data, data products, software and services, available from distributed Research Infrastructures (RI), for solid Earth science in Europe. Indeed, EPOS integrates a large number of existing European RIs belonging to several fields of the Earth science, from seismology to geodesy, near fault and volcanic observatories as well as anthropogenic hazards. The EPOS vision is that the integration of the existing national and trans-national research infrastructures will increase access and use of the multidisciplinary data recorded by the solid Earth monitoring networks, acquired in laboratory experiments and/or produced by computational simulations. The establishment of EPOS will foster the interoperability of products and services in the Earth science field to a worldwide community of users. Accordingly, the EPOS aim is to integrate the diverse and advanced European Research Infrastructures for solid Earth science, and build on new e-science opportunities to monitor and understand the dynamic and complex solid-Earth System. One of the EPOS Thematic Core Services (TCS), referred to as Satellite Data, aims at developing, implementing and deploying advanced satellite data products and services, mainly based on Copernicus data (namely Sentinel acquisitions), for the Earth science community. This work intends to present the technological enhancements, fostered by EPOS, to deploy effective satellite services in a harmonized and integrated way. In particular, the Satellite Data TCS will deploy five services, EPOSAR, GDM, COMET, 3D-Def and MOD, which are mainly based on the exploitation of SAR data acquired by the Sentinel-1 constellation and designed to provide information on Earth surface displacements. In particular, the planned services will provide both advanced DInSAR products (deformation maps, velocity maps, deformation time series) and value-added measurements (source model, 3D displacement maps, seismic hazard maps). Moreover, the services will release both on-demand and systematic products. The latter will be generated and made available to the users on a continuous basis, by processing each Sentinel-1 data once acquired, over a defined number of areas of interest; while the former will allow users to select data, areas, and time period to carry out their own analyses via an on-line platform. The satellite components will be integrated within the EPOS infrastructure through a common and harmonized interface that will allow users to search, process and share remote sensing images and results. This gateway to the satellite services will be represented by the ESA- Geohazards Exploitation Platform (GEP), a new cloud-based platform for the satellite Earth Observations designed to support the scientific community in the understanding of high impact natural disasters. Satellite Data TCS will use GEP as the common interface toward the main EPOS portal to provide EPOS users not only with data products but also with relevant processing and visualisation software, thus allowing users to gather and process on a cloud-computing infrastructure large datasets without any need to download them locallyPeer reviewe

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Fractal Models for SAR images

    Get PDF
    In this thesis the modeling of SAR (Synthetic Aperture Radar) images of natural surfaces described via fractal models is dealt with. A complete theoretical forward model linking the parameters describing the scene observed by the sensor to the stochastic characterization of the relevant SAR image is provided. The inverse problem is treated as well: a SAR image post-processing able to automatically retrieve - operating on an amplitude single SAR image - the fractal parameters of the scene, is presented. The developed imaging model is based on sound geometrical and electromagnetic models that are combined according to the SAR impulse response function. The power spectral densities of appropriate cuts of the SAR image are evaluated in closed form in terms of the surface fractal parameters. The theoretical results are here conceptually assessed, analytically derived, graphically validated and numerically verified. Moreover, based on the inversion of the forward theoretical model, an innovative SAR image post-processing for the fractal parameters estimation is implemented. It is firstly tested on simulated SAR images, then it is applied to different types of new generation (i.e. high resolution) SAR images. The generated fractal maps show themselves to be very useful for a wide range of application, e.g. prevention and monitoring of environmental disasters, geodynamic processes interpretation, land classification, rural planning, and so on

    SAR Imaging of Fractal Surfaces

    No full text

    Sentinel-1 T117 co-seismic interferogram of Amatrice earthquake (Italy) generated through the ESA G-POD platform

    No full text
    Sentinel-1 T117 co-seismic interferogram (wrapped) of Amatrice earthquake (Italy). Data Type: wrapped Interferogram (radians) Sensor: Sentinel-1 Observation interval: 15082016S1A_27082016S1A Applied Phase Filter: None Wavelength: 5.5465760 [cm] Look Angle: 39.060890 [deg] Projection: Geografic Lat-Long (WGS84) Author: IREA - CNR Acknowledgments: Contains modified Copernicus data (2016), ESA GEP, G-POD, CNR-IREA, Italian DP
    corecore